Contrasting short-term performance of mountain birch (Betula pubescens ssp. czerepanovii) treeline along a latitudinal continentality-maritimity gradient in the southern Swedish Scandes
Keywords:
Swedish Scandes, treeline, revisitation study, climate warming, regeneration, Betula pubescens ssp. czerepanoviiAbstract
Positional treeline shift is a fundamental aspect and indicator of high-mountain vegetation response to climate change. This study analyses treeline performance during the period 2005/2007 -2010/2011 in the Swedish Scandes. Focus is on mountain birch (Betula pubescens ssp. czerepanovii) along a regional climatic maritimity-continentality gradient. Treeline upshift by 3.0 yr-1 in the maritime part differed significantly from retreat by 0.4 m yr-1 in the continental part of the transect. This discrepancy is discussed in terms of differential warming-induced snow cover phenology patterns and their influence on soil moisture conditions. In the continental area, earlier and more complete melting of prior relatively rare late-lying snow patches, even high above the treeline, has progressed to a state when melt water irrigation ceases. As a consequence, soil drought sets back the vigor of existing birches and precludes sexual regeneration and upslope advance of the treeline. In the maritime area, extensive and deep snow packs still exist above the treeline and constrain its position, although some release is taking place in the current warm climate. Thereby, the birch treeline expands upslope as the alpine snow patches shrink, but continue to provide sufficient melt water throughout the summer. Treeline rise appears to have been based primarily on seed regeneration over the past few decades. This is a novelty, since prior (1915-2007) treeline advance was accomplished mainly by in situ shifts in growth form of relict krummholz birches, in some cases millennial-old, prevailing above the treeline. By the snow phenology mechanism, birch can benefit from climate warming in the maritime region, which contrasts with the situation in the continental region. This discrepancy should be accounted for in projective models. In a hypothetical case of sustained warming, the subalpine birch forest belt may expand less extensively than often assumed, although advance may continue for some time in snow rich maritime areas.
Downloads
Published
Issue
Section
License
Authors who publish with Fennia agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. The license of the published metadata is Creative Commons CC0 1.0 Universal (CC0 1.0).
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a doctoral dissertation or book compilation), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
.png)



